
 epsilon expansion for correlated percolation: applications to gels

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1980 J. Phys. A: Math. Gen. 13 1783

(http://iopscience.iop.org/0305-4470/13/5/036)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 05:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/13/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 13 (1980) 1783-1789. Printed in Great Britain 

E expansion for correlated percolation: applications to gels 

A Conigliot$O and T C Lubenskyllll 
i. Department of Physics, Boston University, Boston, Ma 02215, USA 
11 Department of Physics, University of Pennsylvania, Philadelphia, Pa 19104, USA 

Received 12 September 1979 

Abstract. The momentum space renormalisation group is applied to a Hamiltonian which 
describes site-bond correlated percolation, which in turn models the sol-gel transition when 
solvent effects are present. Mean field theory is used to determine the qualitative features of 
the phase diagram which includes sol and gel phases in either one- or two-phase regions. 
Recursion relations in d = 6 - E  dimensions are derived and are shown to have a fixed point 
corresponding to simultaneous gelation and phase separation. At this fixed point, the 
critical exponents describing phase separation are the same as for the king model vo = $, 
U = 0 for d > 4 whereas those describing gelation differ from those for the usual percolation 
problem: v1 = 2/(d -2), q1 = 0 for 4 < d < 6. 

In the site percolation problem, sites are occupied at random and clusters consist of 
groups of nearest-neighbour occupied sites; in bond percolation, bonds are occupied at 
random and clusters consist of sites connected by occupied bonds (Essam 1973, Stauffer 
1979). Recently, site-bond correlated percolation has been proposed (Coniglio er a1 
1979) as a model for reversible sol-gel phase transitions (Tanaka et a1 1979). In this 
model, sites can be vacant or occupied with probabilities determined by thermal 
equilibrium Boltzmann factors as in a lattice gas or Ising model. Bonds between 
nearest-neighbour occupied sites can form with probability pB. One then considers 
bond percolation among the occupied sites. Unoccupied sites correspond to solvent 
molecules, occupied sites to monomers that can be chemically bonded to form a gel. 
Percolation among the occupied sites corresponds to gelation. It has been shown 
(Murata 1979, Coniglio and Klein 1979 (unpublished)) that the correlated site-bond 
model can be obtained from the one-state limit of the diluted s-state Potts model. In 
this model, each site, x, on a d-dimensional lattice has associated with it a Potts variable 
( ~ ( x )  = 1, . . . , s and a lattice gas variable n ( x )  = 0, 1. The Hamiltonian is 

-@E = J 1 ( x ) n  (x ' ) [s~, (~) , (~, )  - 11 + K 1 ( x ) n  (x') - A 1 n (x) 
(x,x') h x ' )  X 

where K is the lattice gas nearest-neighbour constant, A is the chemical potential for 
occupied sites, and J is related to the probability pB that a bond between occupied sites 
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is present via the relation pB = 1 -- e-’. An interesting property of the Hamiltonian (1) is 
that for J = $K, it becomes equivalent to the (s + 1)-state Potts Hamiltonian, which 
becomes equivalent to the lattice gas Hamiltonian when s + 1. Consequently, one 
expects the percolation critical point that occurs as J is varied keeping K = 2J to have 
Ising symmetry. The Migdal renormalisation group procedure (Migdall975, Kadanoff 
1975) has been applied to Hamiltonian (1) (Coniglio and Klein 1979 (unpublished)). 

In this paper, we will study correlated site-bond percolation within the context of the 
E expansion (Wilson and Fisher 1972) with particular emphasis on the critical point 
where the percolation and lattice gas variables order simultaneously. In order to 
express the partition function for the Hamiltonian (1) in field theoretic form, we first 
rewrite (1) as 

A Coniglio and T C Lubensky 

where summation over repeated I indices is understood, I? = $K, k = &$zK -A)  where 
z is the coordination number of the lattice, s(x) = 2 n ( x )  - 1, b r ( x )  = n ( x )  where 
eT(x) satisfy the relations (Zia and Wallace 1975) 

and where Hl = He ‘ 1 .  

Using the Hubbard-Stratanovich transformation and appropriately shifting vari- 
ables (see, for example, Amit 1978), the partition function for equation ( 2 )  can be 
written as 

Going to the continuuni limit and retaining only the leading terms in qh and do, we 
obtain 
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where 

1 d / 2  3 -112  where r l  = z ( l - i z J ) ,  r o = t ( l - I & ) ,  w1 =iad12z3J312,  w2=3a z K J and u l =  
f t a d z 4 K 2  where a is a lattice constant, and where external fields have been rescaled via 
h = a.-d/2 j - 1 1 2  h and H = a-d/21?'12H. Finally, 

The free energy, F, in mean field theory is obtained by ignoring spatial fluctuations 
in 40 and 41 and setting 41 = e I' 4 : 

where R is the volume. 
In the limit s -+ 1, we obtain the following equations of state: 

Note that equation (11) is the mean field equation of state for the Ising model and is 
completely independent of the percolation variables. For h = 0, the king order 
parameter satisfies 

whereas the percolation (or gel) order parameter (fraction of sites in the infinite cluster) 
satisfies 

r l >  w240. 

The phase diagram implied by equations (13) and (14) is shown in figure 1. Note that 
there is a one-phase region and a two-phase region (solvent-rich and solvent-poor) and 
that in both regions both sol and gel phases exist. The percolation (gelation) threshold 
occurs at r l  = ~ ~ 4 ~ .  The mean cluster size (clusters are occupied sites connected by 
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‘ 0  

I1 I 

Figure 1. Phase diagram corresponding to equations (13) and (14). Region I is a single- 
phase sol, region I1 a single-phase gel, region I11 a two-phase sol, region IV a solvent-rich sol 
coexisting with a solvent-poor gel, and region V two coexisting gel phases. 

occupied bonds), S,  diverges at threshold as 

If we choose ro = rl which corresponds to J = iK, the gelation (percolation) curve is 
ro = w z 4 0  (see figure 2). Note that the gelation curve terminates at the Ising critical 
point as expected. The mean field critical exponents for gelation are the same as those 
for percolation on an undiluted lattice ( y p  = 1, p p  = 1, vp = 0) all along the gelation 
curve including where it intersects the Ising critical point in agreement with results on 
the Bethe lattice (Coniglio et a1 1979). Note also that if rl is fixed at some value other 
than ro, and ro is varied, the gelation curve no longer intersects the Ising critical point in 
agreement with experimental results (Tanaka et a1 1979). 

Figure 2. CO-existence curve (AOB) and gelation curve (OC) for the binary mixture with 
I1 = ro. f$o= ro/ w*.  
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Recursion relations for the potentials in equation (9) in 6 - E  dimensions can be 
developed in the standard way (Wilson and Kogut 1974, Wegner and Houghton 1973, 
Rudnick and Nelson 1976). For simplicity, we consider only the disordered regime with 
H and h = 0 (region I in figure 1). We obtain in the limit s + 1 

where q0 = 0,  V l  = $ K ~ ( w ~  - t w : )  and Kd = 2-‘d-1’.ir-d’2. In general, one might 
expect an additional third-order term, (1/3!)w34:, to develop on iteration of the 
renormalisation procedure. When H = 0, no such term develops in the limits + 1. Note 
that the equation for ro completely decouples from the other equations leading to a 
mean field correlation length exponent, vo = t. Equations (16) have three fixed points: 
(i) the percolation fixed point (Harris et a1 1975) with w2=0, K ~ w :  = 2 ~ / 7  and 
percolation correlation length exponent v;’ = 2 - 5 / 2 1 ,  (ii) an unphysical fixed point 
with w1 = 0 and K6wi = - E ,  and (iii) a new fixed point corresponding to simultaneous 
gelation and phase separation with 

2 2 1  K6w1 = E  K 6 ~ 2  = iE 

(17) 

Though equations (17) are valid only to first order in E ,  we believe that v l  = 2/(d - 2) for 
all 4 < d < 6. The argument proceeds as follows. The scaling exponent for the field q50 is 
x o  = $(d -2) and for Z14?  is d - l / u l .  The quantity wzr$o X1 4? must scale as the 
inverse volume (i.e. with exponent d). w2 reaches a constant value at the fixed point so 
that it does not change under rescaling. Thus, assuming that the scaling exponent for 
c $ ~  X 1  q5? is the sum of those for do and X1 +?, we obtain 

i (d  - 2) + (d - vT1) = d or 
2 

d - 2  
VI=- 

in agreement with the results of the E expansion. The crucial assumption, here, is that 
do XI 4; could be decomposed into independent parts q50 and X I  4;. We believe this 
decomposition is valid for d > 4. At d = 4, +o begins to scale non-classically and the 
relation vl  = 2/(d -2) probably breaks down. 

Equations (16a) and (16b) determine scaling in the variables ro and rl. Linearising 
in the vicinity of the critical point, we obtain 
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where i, j = O ,  1, t l - r l + ~ K ~ w l  - K ~ w : ,  to=roand 
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1 2  

Mij has eigenvalues A ( ' )  = 2 - ~ / 2  = v;' and A(') = 2 = v i ' .  It is non-Hermitian with 
right and left eigenvectors e:"' and die)  satisfying 

Miieia' = A (a)eia) d f " ) M ,  = A ( a ) d Y )  (21) 
i 

for a = 1,0, where el1) = (0, 1), di" = (1, -l), el"' = (1,l) and d?' 2= (0, 1). The scaling 
variables are thus 

t ( ' ) ( l )  = 1 dil ) t i ( I )  = eA""(tl(0) --to(0)) 
i 

t"'(1) = d!"ti(l)  = eAco'ito(0). 
i 

Therefore, quantities such as the mean square cluster size satisfy scaling equations of 
the form 

where r l = ( 2 - ~ 1 ) v 1 = 4 / ( d - 2 )  a n d ~ = h ' o ' / A ' 1 ' = 4 / ( d - 2 ) > 1 .  
If the probability that a bond is occupied is varied at K = K, (i.e. to = 0), S is 

proportional to t;"'. If t ( l ) = O  (this corresponds to the line J = i K ) ,  S-t,' in 
agreement with previously discussed symmetry arguments requiring Ising exponents 
along this line. Finally, if tl = At0 for any 0 < A  < 00, S - t i 1  since 4 > 1. Thus if the 
critical point is approached along any straight line path in the tl - to plane, Ising-like 
exponents will be seen. 

Acknowledgments 

We are grateful to W Klein and H E Stanley for helpful discussions. One of us (.4C) is 
also grateful to H E Stanley and members of the Physics Department of Boston 
University for warm hospitality. One of us (TCL) gratefully acknowledges financial 
support from the Alfred P Sloan Foundation. 

References 

Amit D 1978 Field Theory: The Renormalization Group and Critical Phenomena (New York: McGraw-Hill) 
Coniglio A, Stanley H E and Klein W 1979 Phys. Reo. Lett. 42 518 
Essam J W 1973 Phase Transitions und CriticalPhenomena vol 2, ed C Domb and M S Green (New York: 

Harris A B, Lubensky T C, Holcomb W K and Dasgupta C 1975 Phys. Rev. Lett. 35 327-30 
Kadanoff L P 1976 Ann. Phys., N Y  100 359 
Migdal A A 1975 Zh. Eksp. Teor. Fiz. 69 1457 
Murata K 9 1979 J. Phys. A:  Math. Gen. 12 81 
Rudnick J and Nelson E) R 1976 Phys. Rev. B 13 2208 
Stauffer D 1979 Phys. Rep. 54 1-74 

Academic) pp 197-270 



E expansion for correlated percolation 

Tanaka T, Swislow G and Ohmine I 1979 Phys. Rev. Left .  42 1557 
Wegner F J and Houghton A 1973 Phys. Rev. A 8 401 
Wilson K G and Fisher M E 1972 Phys. Rev, Left. 28 240 
Wilson K G and Kogut J 1974 Phys. Rep. 12C 77 
Zia R K P and Wallace D J 1975 J. Phys. A: Math. Gen. 8 1495 

1789 


